Article 7420

Title of the article

A DEVELOPMENT OF SPRAY-PYROLYSIS TECHNOLOGY FOR SYNTHESIS OF TRANSPARENT CONDUCTIVE COATINGS BASED ON TIN DIOXIDE 

Authors

Pecherskaya Ekaterina Anatol'evna, Doctor of engineering sciences, associate professor, head of the sub-department of information and measuring technology and metrology, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: pea1@list.ru
Zinchenko Timur Olegovich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: scar0243@gmail.com
Kravtsov Aleksandr Nikolaevich, Candidate of engineering sciences, associate professor, head of the sub-department of metrological support of weapons, military and special equipment, Military Space Academy named after A. F. Mozhaysky (13 Zhdanovskaya street, St. Petersburg, Russia), E-mail: kan1970@bk.ru
Aleksandrov Vladimir Sergeevich, Student, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: Nauka-fpite@mail.ru
Berzhinskaya Marina Viktorovna, Candidate of engineering sciences, associate professor, sub-department of information and measuring technology and metrology, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: mberj@mail.ru 

Index UDK

620.1.08 

DOI

10.21685/2072-3059-2020-4-7 

Abstract

Background. The advantages of the spray-pyrolysis method are the ability to produce films with a high area and a high degree of uniformity at acceptable (from 100 to 500 °C) process temperatures. The method does not require the use of vacuum at all stages of the process. The aim of the study is to select the optimal technological parameters for obtaining transparent conductive coatings based on tin dioxide with minimal surface resistance.
Materials and methods. Such technological stages of the process of obtaining samples of transparent conducting oxides based on tin dioxide are presented in the research as preparation of the surface of glass substrates; preparation of precursor solutions; deposition of pure and antimony-doped films of tin dioxide on the surface of substrates.
Results. A method for the synthesis of transparent conducting oxides samples based on tin dioxide by the spray-pyrolysis method was developed, and the optimal values of technological parameters aimed at achieving the minimum surface resistance of samples with a SnO2 coating were established empirically.
Conclusions. The proposed technological modes make it possible to synthesize by spray pyrolysis transparent conducting oxides based on tin dioxide with a surface resistance RS = 27 Ohm/□, which corresponds to the modern world level of industrially produced transparent conducting coatings based on tin-doped indium oxide. The results obtained confirm the feasibility of manufacturing transparent conductive coatings based on tin dioxide by spray-pyrolysis. 

Key words

spray-pyrolysis, tin dioxide, precursor, transparent conductive oxide, surface resistance

Download PDF
References

1. Zinchenko T. O., Pecherskaya E. A. Informatsionnye tekhnologii v nauke i obrazovanii. Problemy i perspektivy: sb. nauch. st. Vseros. mezhvuz. nauch.- prakt. konf. (g. Penza, 14 marta 2018 g.) [Information technology in science and education. Problems and prospects: proceedings of the All-Russian intercollegiate scientific and practical conference (Penza, March 14, 2018)]. Penza: Izd-vo PGU, 2018, pp. 256–258. [In Russian]
2. Zinchenko T. O., Pecherskaya E. A. Informatsionnye tekhnologii v nauke i obrazovanii. Problemy i perspektivy: sb. nauch. st. Vseros. mezhvuz. nauch.- prakt. konf. (g. Penza, 14 marta 2018 g.) [Information technology in science and education. Problems and prospects: proceedings of the All-Russian intercollegiate scientific and practical conference (Penza, March 14, 2018)]. Penza: Izd-vo PGU, 2018, 258 p. [In Russian]
3. Lashkova N. A., Permyakov N. V., Maksimov A. I., Spivak Yu. M., Moshnikov V. A. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Fiziko-matematicheskie nauki [Bulletin of St. Petersburg State Polytechnic University. Physics and mathematics sciences]. 2015, no. 1 (213), pp. 31–42. [In Russian]
4. Untila G. G., Kost T. N., Chebotareva A. B., Timofeev M. A. Fizika i tekhnika poluprovodnikov [Semiconductor physics and technology]. 2012, vol. 46, no. 7, pp. 984–990. [In Russian]
5. Kondrashin V. I., Metal'nikov A. M., Pecherskaya R. M., Solov'ev V. A. Trudy Mezhdunarodnogo simpoziuma Nadezhnost' i kachestvo [Proceedings of the International symposium “Safety and quality”]. 2014, vol. 2, pp. 147–148. [In Russian]
6. Birkina N. I. Metodicheskie rekomendatsii po provedeniyu prakticheskikh rabot distsipliny khimiya [Methodical recommendations for carrying out practical work in the discipline of chemistry]. Rostov-on-Don, 2015, 48 p. [In Russian]
7. Dolgov V. V., Ovanesov E. N., Shchetnikovich K. A. Fotometriya v laboratornoy praktike [Photometry in laboratory practice]. Moscow: Rossiyskaya meditsinskaya akademiya poslediplomnogo obrazovaniya. 2004, vol. 103. [In Russian]
8. Zinchenko T. O., Pecherskaya E. A., Artamonov D. V. AIMS Materials Science. 2019, vol. 6 (2), pp. 276–287. DOI 10.3934/matersci.2019.2.276.
9. Naumov A. V. Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya [University proceedings. Nonferrous-metals industry]. 2005, no. 4, pp. 12–17. [In Russian]
10. Zinchenko T. O., Kondrashin V. I., Pecherskaya E. A., Kozlyakov A. S., Nikolaev K. O., Shepeleva J. V. IOP Conference Series: Materials Science and Engineering. 2017, vol. 225 (1), p. 012255.

 

Дата создания: 17.02.2021 12:13
Дата обновления: 17.02.2021 13:26